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Analytic method for solving the nonlinear Schrodinger 
equation describing pulse propagation in dispersive optic 
fibres 

D Mihalache and N C Panoiu 
Department of Theoretical Physics, Institute of Atomic Physics, PO Box MG-6, Bucharest 
Romania 

Received 24 December 1991, in final form 8 September 1992 

Abstract We give B method for obtaining new exact solutions of the nonlinear Schriidinger 
equation describing pulse propagation in o p t i d  fibres for both the anomalous and the n o d  
dispersion regime. The method is based on the construction of a celrain complete integrable 
finite-dimensional dynamical system whose solution determines the exact solutions of the 
nonlinear ScWinger  equation. By using the phase diagram associated with the corresponding 
nonlinear differential equations we classify all the obtained solutions into one of the following 
categories: bright or dark solitary waves, bright or d& soliton solutions, rational (algebraic) 
bright or dark solitons, regular or singular periodic waves and starionary solutions. 

We give a set of particular solutions which describe the periodic wave patterns that are 
generated by the temporal self-phase modulation instability, the periodic evolution of bright 
solitons on a continuous wave background and the collision of two dark waves with equal 
amplitudes. 

1. Introduction 

Optical solitons in fibres are pulses that propagate without any change in pulse shape or 
intensity. Because of their remarkable stability properties, optical solitons are now at the 
centre of an active research field of nonlinear wave propagation in optical fibres. This 
research field started with the result [l-21 that under appropriate combinations of pulse 
shape and intensity, the effects of the intensity-dependent refractive index of the fibre exactly 
compensate for the pulse-spreading effects of group velocity dispersion. For negative group 
velocity dispersion or anomalous dispersion regime (a2k/au2 < 0) which occurs in typical 
single-mode silica based fibres for wavelengths h > 1.27 pm the fundamental soliton 
is called a bright pulse [l] and the propagation of these bright solitons has been studied 
intensively and verified experimentally 131. For positive group velocity dispersion or normal 
dispersion regime ( a 2 k / a W 2  > 0) the theory [Z] and~numerical simulations [4-51 predict 
that the solitons are dark pulses (i.e., a dip occurs at the centre of the pulse). The generation 
of dark solitons in singlemode optical fibres was also demonstrated [&SI. Recently a new 
soliton txansmission technique which makes positive use of the existence of slight fibre loss, 
called dynamic soliton communication, was used to send optical solitons over long distances 
191. It was demonstrated that digitally-coded optical solitons at a bit rate of 20 Gbit s-’ 
can be successfully transmitted over 1020 km using erbium-doped fibre amplifiers [IO]. We 
mention also the works of several very active research groups in the field of the theory 
of pulse propagation in optical fibres in both the picosecond and the femtosecond regime 
[ll-321. 

0305-4470/93/112679+19$07.50 @ 1993 IOP Publishing Ltd 2619 



2680 D Mihalache and N C Panoiu 

The propagation of optical pulses in mono-mode optical fibres exhibiting Kerr-law 
nonlinearities is described well by the dimensionless nonlinear Schrodinger equation (NLSE): 

ieX +e@tit + 21@1’@ = O ~ ~ ~~ (1.1) 

where II, represents a normalized complex amplitude of the pulse envelope, x is a normalized 
distance along the fibre, f is the normalized retarded time (we employ a frame of reference 
moving with the pulse at the group velocity us). E = 1 corresponds to the anomalous 
dispersion region where bright solitons can exist and E = -1 corresponds to the normal 
dispersion region where dark solitons occur. 

The NLsE~is one of the complete integrable nonlinear partial differential equations and 
the solutions may be obtained by different methods, e.g., by using the inverse scattering 
method [33-391 or the Lie groups theory [40-42]. Another way of obtaining solutions of 
NLSE is the Darboux transformation method [43]. We mention also the work on inverse 
scattering transform perturbation theory for soliton propagation and the extended first- and 
second-order perturbation expansion for soliton propagation in optical fibres 1441. 

The two-parameter one-soliton solution of the NLSE (1.1) can be written as [33]: 

II,b(x, t )  = q sech[q(t + 2~x)Jexp[i(q’ - K’)X - i ~ t ]  

@d(x, t )  = q tanh[q(t + 2 ~ x 1 1  exp[i(Q2 + 2 ) x  + kt] 

E = 1 (1.2) 

E = -1 (1.3) 

where q is a form factor that determine the pulse amplitude and width, K is the frequency 
shift of the soliton and the subscripts b and d denote bright and dark pulses, respectively. 

The canonical single-soliton solutions of the NLSE (1.1) are given by [1-2]: 

@L(x, t )  = sechr exp(ix) E = 1 ( 1.4) 

@&,t) = tanhtexp(2ix) E = -1. (1.5) 

An important scaling relation holds for the NLSE (1.1). If V(x, t )  is a solution of this 
equation then 

@ ( x ,  0 = q@’(q2x. qt) (1.6) 

is also a solution, where q is an arbitrag scaling factor: 

h ( x ,  r )  = q sech(qt) exp(iq’x) ~ E = 1 ( 1.7) 

e&, t )  = q tanh(qt) exp(2iq’x) E = -1. (1.8) 

Recently a new method of obtaining exact solutions of the NLSE (1.1) for describing 
pulse propagation in optical fibres in the anomalous dispersion regime (E = 1) was given 
[45]. This method came from the observation [46] that the one-soliton solutions and the 
periodic solutions which describe the development of the self-phase modulation instability 
[47] belong to a large class of complex solutions @ ( x ,  t )  = u ( x ,  t )  + iu(x, t ) ,  the so-called 
first-order solutions of the NLSE (1.1) for which a linear relationship 

u(x ,  t )  - ao(x)u(x, t )  - bo(x) = 0 ( 1.9) 

holds between the real part u(x ,  f) and the imaginary part u(x,  r )  of the complex function 
@(x,  t ) ,  where the coefficients a0 and bo depend only on the spatial coordinate x (the 
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normalized distance along the fibre). We note that the two-soliton, or more generally, the 
n-soliton solutions (n 2 2)  and the periodic solutions with more than one period in the 
time variable t do not belong to this set of solutions of the NLSE (1.1) for which the linear 
relationship (1.9) holds [46]. 

The method developed in [45] is essentially the construction of a certain system of 
ordinary differentid equations the solutions of which determine the solutions of NLSE (1.1). 

In section 2 we shall present the method which allows us to obtain new exact solutions 
of NLSE (1.1) for E = f l .  By using the linear relationship (1.9) between the unknown 
functions u(x, t )  and u ( x ,  t )  we will construct a certain dynamical system, the solution of 
which determines the exact solution of NLSE (1.1) with E = f l .  In the general case we 
obtain a three-parameter family of solutions of NLSE (1.1) which are expressed in terms of 
the Jacobi elliptic functions and the incomplete elliptic integral of the third kind [48]. 

In section 3 we list a compendium of solutions that are relevant to equation (1.1) with 
E = + I .  In the last section we briefly present our conclusions. 

By using the phase diagrams associated with the corresponding nonlinear differential 
equations we classify all the obtained analytical solutions into one of the following 
categories: bright or dark solitary waves, bright or dark soliton solutions, rational (algebraic) 
bright or dark solitons, regular or singular periodic waves and stationary solutions. This 
simple geometrical way to classify the solutions of the corresponding nonlinear differential 
equations associated with the NLSE (1.1) is more suggestive than the analysis made in 
[45] on the general three-parameter family of solutions. In addition, our paper contains a 
comprehensive analysis of the so-called first-order solutions of the NLSE (1.1) for which the 
linear relationship (1.9) holds for both the positive and the negative dispersion regimes. 

2. The description of the method 

We introduce new unknown functions Q ( x ,  t) ,  6 ( x )  and &) through the following relations 
[45]: 

a&) = cotanrp(x) (2.1) 

u(x, t )  = Q ( x ,  t)cos(p(x) -8(x)sinrp(x) (2.3) 

such that we have the following representation for the unknown function $(x, t): 

@ ( x ,  f) = [Q@, 0 +i6(x)lexp[irp(x)l. (2.4) 

By introducing (2.4) in the NLSE (1.1) and taking the real and imaginary parts we are 
left with the following system of differential equations: 

. 
E Q ~ ~ - ~ , - ~ ~ Q + Z S ~ Q + ~ Q ~ = O  (2.5) 

(2-6) Q, - VJ + 2s QZ + 263 = 0. ~~ 

Here the differential equation (2.5) has a first integral: 
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where h(x) is a function which depends only on the spatial variable x .  
The condition of compatibility of the system of differential equations (2.5) and (2.6), 

i.e., Qxr = QIx gives the following system of three ordinary differential equations for the 
unknown functions q ( x ) ,  S (x ) ,  and h(x): 

The dynamical system (2.8)-(2.10) corresponding to (1.1) with E = f l  has the following 
three first integrals: 

qx +462 = w 
eh + Ws2 - 364 = e H  

S~+(WZ+4~H)SZ-8W64+16S6 = G .  

(2.11) 

(2.12) 

(2.13) 

Next with the help of the substitution z(x) = S 2 ( x )  we obtain: 

zx- '--64z4+32Wz3 - -4(W2+4~H)z2+4Gz. (2.14) 

Now let 010 = 0, 011, 012, a3 be the roots of the polynomial on the right-hand side of 
(2.14). These roots are connected with the prime integrals W, H and G via the Vi& 
relations: 

w = 2(011 -b a2 + 013) 
E H  = 2oLlr~z + 
G = l6011aza3. 

+ ~ W Z I  - 01: -01; - 01; 

Next the equations (2.7) and (2.14) become, respectively: 

e: = --EP1tQ, ' Me) 
2,' = - 6 4 ~ ( ~  - O~I)(Z - EZ)(Z - a3). 

The polynomials on the right-hand side of (2.18) have the form (see [49] p 24): 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

PI,z(&) = Q2*2(a3 - Z ) ' ~ Q + + ~ - W I  -01zf~-12[(ai  -Z ) (OIZ-Z)~~ '~ .  (2.20) 

The simplest solution of (2.19) is the constant function z = 0 which gives the stationary 
solution of (1.1). We note that the function z cannot be one of the roots ai (i = 1,2,3) 
because in this case the equation (2.6) cannot be fulfilled. Similarly, (2.18) has the solutions 
Q = Qi (x ) ,  i = 1, . . . ,4, where Qi(x)  are the roots of the polynomial P l ( Q ) .  &(e). For 
these particular solutions the function + depends only on the spatial variable x .  We observe 
also from (2.19) and (2.1 1) that the functions z(x) and q ( x )  have the same expressions for 
both E = 1 and E = -1. 
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From (2.19) it is easy to see that at least one of the roots ai is positive and in the 
following we suppose that a3 0. Because the functions Q(x, t )  and z ( x )  are real we 
have two distinct situations: a) a1, az, a3 are real numbers and b) a3 2 0, a1 and (YZ are 
complex conjugate numbers (011 = a; = p + iq). In the case a), me discriminants 01.2 of 
the polynomials Pl.z(Q) are: 

(2.21) 

where D1.2 corresponds to Pl(Q) and P2(Q), respectively and in the case b) the 
discriminants 01.2 ,are: 

- [ ( z  - a1)’/’ * (z - az)l/zlz 

[(U1 - Z)I/Z + (a2 - Z)l’ZlZ 
for 012 < z ’< a3 
for 0 < z < a1 

Di,z = 

0 1 , z  = Z(P - 2) ‘f 2[ (p  - 2)’ + i7211’2. (2.22) 

By using the expressions (2.21) and (2.22) for tbe discriminants 01.2 we can choose 
different kinds of root degeneracies of the polynomial on the right-hand side of (2.18) by 
selecting the constants ai (i = 1,2,3). 

Finally knowing the functions Q(x, t ) ,  z ( x )  and q ( x )  we’can write the solution +(x ,  t) 
Of the NLSE (1.1): 

+(x ,  t )  = t )  + i ~ z ~ ~ ~ 1 ~ ~ ~ ~ e x p ~ i ~ ~ ~ ~ l .  (2.23 

3. Analytic solutions 

The relation between QT and Q given by (2.18) can be illustrated by the phase diagrams 
of figures 1 and 2 corresponding to E = -1 and E = 1, respectively. 

In the following we will list the solutions of equation (1.1) with E = zkl for different 
kinds of root degeneracies of the polynomial on the right-hand side of (2.18). They are all 
referred to phase diagrams of figures 1 and 2. 

3.1. Q, = QZ = Q3 = Q4 = O  

For this situation, we have the singular stationary solution which exists only for E = -1 
because Q is a real function: 

1 
t ’  Q = -  (3.1) 

This case is realized when a, = a2 = a3 = 0 and z = 0 (see figure .l(a)). Thus we 
obtain the following solution of NLSE (1.1) with E = -1: 

1 
t +(x ,  t )  = -e’” (3.2) 

where (00 is a constant phase. 
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Figure 1. Phase diagnms for (2.18) with E = -1 for different kinds of roots degeneracies (the 
crosses denote a multiple zero of Qf). (a) CII = a2 = a3 = 0 and L = 0, (b) nl = n2 = > 0 
and 0 < L < ai, (c)  011 = 02 = 0, > 0 and z = 0, (d)  a1 = 02 > 0, a3 > a1 and 
0 < L < ai, (e) a2 = rr3 > 0 and 0 < z < ai < az. 0 OLI c a2 c a3 and 0 < L <U,, (s) 
U! =U; and 0 < 2 < OL3, (h) U1 < L I Z  <! $9 m d Z >  0. 

3.2. Q4 = Q3 = QZ < Q I  

regimes: 
Here we have analytic solutions for both anomalous ( E  = 1) and normal ( E  = - 1) dispersion 

(3.3) 

where Q ( x ,  t = 0) = Ql = 3(a1 - z)l/', Q2 = Q3 = Q 4  = -(a1 - z)'l2. 
For E = 1 the solution (3.3) represents the bright rational (algebraic) solitary wave and 

for E = -1 the singular rational (algebraic) solution. 
This case is obtained for the choice a1 = a2 = ayg 0 and 0 < z < 011 (see figures 1(b) 

and 2(a)). Thus we find the following expressions for the functions z(x) .and &): 

(3.4) 
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Figure 2. Phase diagrams for (2.18) With E = 1 for different kinds of roo& degeneracies (the 
crosses denote a multiple zero of Q:). (a) a1 = a2 = a3 > 0 and 0 4 z 4 011, (b) a1 = 012 > 0, 
a3 > a, and 0 < I 4~a1, (c )  a2 = as > 0 and 0 4 z 4 (11 c a2, (d) a1 c a2 c (13 and 
0 4 z < 111, (e) 011 =cl; and o < z  6%. 

q(x) = 2a1x + arCtan(4alX). (3.5) 

We note that the solutions of the NLSE (1.1) obtained by using this direct method form 
a threeparameter family. Let @(x, t) be the solution of the NLSE (1.1) corresponding to the 
three real parameters a; (i = 1,2,3), where at least one is positive (a3 2 0) and let @'(x, t )  
be the solution of (1.1) corresponding to the two parameters a1 = a1/2a3 and a2 = a22/2a(3 
(a3 = i). These two solutions of the NLSE (1.1) are connected via the scaling relation (1.6) 
by choosing the scaling factor q = 2a3 > 0. 

In the particular case a1 = a2 = g = by using equations (3.3H3.7) we finally obtain 
the following rational (algebraic) solitons: 

where E = 1 corresponds to the regular rational (algebraic) bright soliton (see figure 3) and 
E = -1 corresponds to the singular rational (algebraic) dark soliton. 
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‘ J  

Figure 3. Intensity profile l+’l’ versus longihldinal coordinate x and time t .  

We note that these solutions correspond to finite boundary conditions at t = f m ,  i.e., 
*’ --f - ( l / f i ) eX as It1 + 00. 

3.3. Q4 = Q3 < QZ = QI 
This case is obtained for a, = a2 = 0, a3 > 0 and z = 0 (see figure l(c)). Here the roots 

are symmetric with respect to the origin: Q, = ez = a:”, Q~ = Q~ = -a:/’.  his 
case is realized only for E = -1. 

The solution Q on the branches (1) in figure l(c) is: 

Q =a3 ‘I’ cotanh(a;/2t) (3.7) 

and for the function p(x) we have the simple expression p(x) = Zu3.z. Thus the function 
$ ( x ,  t )  is the singular solution: 

* ( x ,  t )  = u~/’cotanh(a:/’f)exp(2ia~x). (3.8) 

Q = U;’’ tanb(a:”t) (3.9) 

The corresponding solution on the branch (2) in figure l(c) is: 

the function p(x) remaining unmodified. Thus with q = 01:” we obtain the dark soliton 
solution (1.8). 
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3.4. a, = orz > 0, or3 > or, and 0 < z < or, (see figures l ( d )  and 2(b)) 

Here we have Q I  = 2 ( q  - z)~/' + (or3 - z)I/', QZ = -2(or1 - z ) ' l z  + (or3 - z)llz, and 
Q3 = Q4 = -(or3 - z)"'. In this case for E = -1 we have: 

Here B = ?.(or3 - al)'/', the solution (3.10) corresponds to Q ( x ,  t = 0) = Ql and the 
solution (3.11) corresponds to Q ( x ,  t = 0) = Qz.  

.For E = 1 the solution is: 

(3.12) 

where p is as before and the upper and the lower signs in (3.12) correspond to Q(x,  t = 
0) = Q l  and Q ( x ,  t = 0) = Qz,  respectively. 

We note that the solution (3.10) which corresponds to the branches (1) in figure l(d) is 
singular, the solution (3.11) which corresponds to the branch (2)  in figure l(d) represents 
the dark solitary wave and the solution (3.12) is regular and periodic. 

In this case the functions z(x) and p(x) are: 

q ( x )  = Zor33x + arctan [(&)'"Ianhpx]. 

(3.13) 

(3.14) 

In the case E = 1 and for the particular choice al = uz = a, where 0 < a < a3 = 4, we 
finally obtain from (3.12)-(3.14) the following one-parameter family of solutions +'(x,  t )  
which describe the periodic wave patterns that are generafed by the self-phase modulational 
instability: 

[( 1 - 4a) cosh pox 'F (2a)1/z cos pot - ipo sinh pox] ix 
+'(A-, t )  = - e (3.15) 

fi[coshpox (2a) ' /2~O~ Bot] 

where 

Bo = [2(1 - po = [8a(l - 2a)]1/z. (3.16) 

The solutions with different signs in (3.15) correspond to a shift in the variable t equal 
to the semiperiod of the modulation: t --t ~ t + n/j30. In the particular case a = 4 the 
solution (3.15) becomes [46]: , 

(cost i i d s i n h x ) ~  
f i l f i c o s h x  cost] 

+'(x,  t )  = - elx. (3.17) 
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If we write +'(x,  t )  = w(x,  r)eu, then from (3.17) it results 

Thus in the process of evolution from x = -w to x = +w we observe the phenomenon 
of the retum to the initial amplitude 1/A but the phase is reversed ( h p  = x). 

The phenomenon of modulational instability occurs through the interplay between self- 
phase modulation and anomalous group velocity dispersion and manifests itself as the break- 
up of continuous wave radiation into a periodic sequence of optical pulses. In figures 4-6 we 
show the periodic wave pattems that are generated by the self-phase temporal modulation 
instability (two periods are shown). 

Figure 4. Intensity profile 1@'i2 versus longitudinal cwrdinate (mx) and time (pot), with 
a = 0.125. 

In the case E = -1 and for the particular choice al = a:! = a, where 0 < a < a3 = 
we finally obtain from (3.10)<3.11) and (3.13H3.14) the following oneparameter family 
of solutions with finite boundary conditions at t -+ iw showing the collision of two dark 
waves of equal amplitudes: 

+'(x,  t )  = - en (3.18) 

where ,SO and po are given by (3.16). 

[(I -4a)cosh~pox i (g)'/2coshpor -iposinhpox] . 
&I[cosh~T $ (~ZZ) ' /~COS~,~ '~Z] 
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* c  

Pigore, 5. Same as figure 4; with D = 0.25. 

Fwre 6. Same as figure 4, with n = 0.375. 
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The solution corresponding to the upper signs in (3.18) is singular and the solution 
corresponding to the lower signs in (3.18) is regular. In the particular case a = a the 
regular solution (3.18) becomes: 

(cosh t - i f i  sinh x) 
$'(r, t )  = - e"r fir45 coshr + cosh t ]  

If we write $'(A, t) = w(x. t )Gx, we thus have 

(3.19) 

therefore in the process of evolution from x = -co to x = +co the amplitude 1 / 4 5  is 
recovered but the phase is reversed (Ay = x) .  A simple analysis of the expression (3.19) 
for $'(x, t )  shows that for x = 0 the modulus l$'(x, t)l has only one dip at the cenfze of 
the pulse, i.e. at t = 0 but for every x # 0 the modulus has two symmetric dips at t = f r ,  
where 

&sinhZx ( coshx ) t = cosh-' 

Thus the solution (3.19) describes the splitting of a dark pulse into a pair of shallow grey 
waves which move apart with equal and opposite transverse components of the velocities 
as predicted by the inverse scattering theory [33], [4]. 

Figures 7-8 show the evolution of the intensity profile for the regular solution (3.18) 
with a = 0.125 and a = 0.375. We note that the parameter a can be related to the contrast 
of the separated solitons, which is defined in photometry as 

I,, - Imin 
I,, + I,. C =  

and gives the visibility of the solitons. In our case we obtain the simple expression 
C = a/(l -a) .  

3.5. 

Here we have the following roots: Q1 = ( O ~ ~ - Z ) ' ~ ~ + ~ ( O ~ ~ - Z ) ~ ~ ~ ,  Q2 = Q3 = -(cil-~),l/z, 
Q4 = (01' - z ) ' /~  - 2(a3 - z)IlZ. 

= 013 > 0 and 0 6 z 6 OCI IC C U ; ~  (see. figures l ( d )  and 2(c)) 

In this case, for E = -1, we obtain the singular'periodic solution: 

and for E = 1 we have the following bright solitary wave: 

011 - ~ w + z - [ [ ( ( I I  - ~ ) ( 0 1 3 - ~ ) 1 ~ / ~ ~ 0 ~ h f l t  
(011 - z)'/' + (a3 - z)'/2COShj3t 

Q = (  2013 - 011 - z - [(U1 - Z)(U3 - z)]l/zcoshflt 

Q4 6 Q < Qz 

QZ < Q < Qi 

(3.21) 

(3.22) 
(a3 - ~ ) ' / ~ c o s h f l t  - (OCI -z)'/Z 
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'-^ Q 

-=+k 

Figure 7. IntensiW profile [$'Iz versus longitudinal coordinate ( ~ x )  and time (Bat).  with 
n = 0.125. 

-9 

Figure 8. Same as figure 7, with a = 0.375. 

where fi  = Z(a3 - 
solution (322) corresponds to Q ( x ,  t = 0) = Q l .  

the bright soliton solution (1.7) with q = 2ff:/*. 

The solution (3.21) corresponds to Q ( x ,  t = 0) = Q4 and the 

We note that from (3.21), (3.22) and (2.11), by choosing & = 0 and z = 0, we obtain 

The functions z ( x )  and p(x) are: . .  



2692 D Mihalache and N C Panoiu 

q ( Y 3  sin’ fix 
z(x) = 

U3 - 011 cos2 p x  

where f i  = 4 [ ~ 3 ( ~ 3  - ~q)] ’ /~ and 

q(x) = 2or,x + arctan [( - r u . ~  ,”.tanfix] 
a 3  -a1 

(3.23) 

(3.W 

Thus the corresponding solution q(x,  t )  given by (2.23) is periodic in the temporal 
variable t and double periodic in the spatial variable x .  

In the case E = 1 and for the particular choice a = al < ‘a? = a 3  = we find from 
(3.21)<3.24) the following oneparameter family of solutions of the NLSE (1) with finite 
boundary conditions at t -+ fw: 

where po = 2(1 - Za)’lz and j30 is given by (3.16). We see from (3.25) that 

+’ +~-al/zez’xas Irl + w 

i.e., for jtl >> 1 this waveform approaches a continuous wave with amplitude a1/2. The 
solutions with different signs in (3.25) conespond to a shift in the spatial variable x 
equal to the semiperiod of the modulation: x --f x + nlpo. We note that the soliton 
solution (3.25) was first obtained 1501 by using the inverse scattering technique for finite 
boundary conditions at t = f w .  For 0 c a c $ the solution (3.25) describes the bright 
solitons superimposed onto a continuous wave background. The soliton amplitude evolves 
periodically along the longitudinal direction x with period (1 - 2a)-1/2n [51]. 

We note also that the bright one-soliton solution of the NLSE (1.1) caqbe obtained from 
(3.25) in the l i t  a -+ ~0: 

+’(x, t )  = q=fisech(-ht) exp(2ix). 

In figures 9-10 we show the evolution of a bright soliton on a continuous wave 
background for a = 0.125 and a = 0.375. 

3.6. (YI < a2 c a3 und 0 < z < or;’’tsee figures I(f) and 2(d)) 

Now we are left with: 

QI = (011 -z) I” + ((YZ -2)” + (Or, -z)’” Qz = (a3  -2)”’ - ((YI -z) - (012 -z)’” 

Q~ = (az - z ) ~ / ~  - (a1 - Z ) I / ~  - (a3 -Z)I/~ Q~ = (al -2) - (az - ~ ) l / ~  - (a3  -z)’/~. 

For E = -1 the solution Q is: 
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c- 
0 9  

Figure 9. Evolution of a bright soliton on a continuous wave background with a = 0.125. 

where sn(t, m) is the Jacobielliptic function, j3 = (a3-a1)'/~ and m2 = (a3-(~2)/(013-(Yi).  

We note that the solution (3.26) which corresponds to the branches (1) in figure l(f) 
is singular and periodic and fhe solution (3.27) which corresponds to the branch (2) in 
figure l(f) is regular and periodic. 

If E = 1 we are left with the following solution: 

where B = (a3 - 011)"~ and m2 = (a2 - 0(1)/(U3 - 011). The solutions (3.21), (3.22) are 
regular and periodic. 

In this case the functions z ( x )  and &) are: 

(3.30) 

where f i  = 4[az(a3 - a ~ ) ] ' / ~ ,  k2 = [Cil(a3 - az)]/[a~(a3 - a1)l and 

(3.31) 

Here n = al/(oll - a3) and n(n;  f i x ,  k )  is the incomplete elliptic integral of the third 

4a3 
p(x) = 2(a1 + a2 - a3)x + --n(n; f i x ,  k). 

P 

kind [48]: 

dy P" 1 1 - n s n 2 ( y , k ) '  
n (n ;  f i x ,  k) = (3.32) 
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P 

Figure 10. Same as figure 9, With Q = 0.375. 

3.7. a! and a2 are complex conjugate numbers and 0 G z 4 rr3 

Suppose a1 = a; = p+iq (see figures I(g) and 2(e)) then we have the roots: Q1.z = - b f d ,  
Q3,4 = b f ic where 

b = (a3 - 2)''; d,  c = [2[@ - 2)' + $1'/2 f 2(P - z))'". 

The solution Q for E = -1 is: 

where p = (AB)'12, m2 = [(A + B)' - (Ql - Q2)']/(4AB) 

A' = (d - 2b)Z + c2 E? = (d + 26)' + c2 

and for E = 1 becomes: 

with A, B and m2 as before with the change B -B. 
In this case the function z(x) is: 

(3.35) 
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where 

From (2.11) and (3.35)~ we finally find the expression for p(x) which is valid for both 
e = l a n d ~ = - I .  

(3.36) 4g d x )  = 2 ( 2 ~  + s ) x  + -[(I - ndn(nl; w , k )  + (nz - I)n(nz; w,Wl 

where 

!J 

The explicit analytical solutions (3.33H3.36) are periodic in x and t so we obtain the 
result that the solution @ ( x ,  t )  is double periodic with respect to the spatial variable x and 
periodic with respect to the time variable t .  We note that the solution (3.33) is~singular and 
the solution (3.34) is finite. 

(3.37) 

Thus for this choice of parameters a; we are left also with the singular periodic solution, 
Finally we have the following expression for the functions z(x)  and p(x): 

(3.38) 
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where p = 4[012(0r3 - ( ~ 1 ) 1 ~ / ~ ,  k2 = [011(013 - a~)]/[orz(or3 - 0191 and 

D Mihalache and N C Panoiu 

p(x) = 2(011+ ctz + 0 1 3 ) ~  - 4pcqx + 4(a1 - olz)n(n; +x, k) (3.39) 

with n = (013 - 1y2)/(~y3 - (~1). 

Finally we mention that on the branch between two double roots (see the case ( c )  in 
figure 1 when Qz = Ql = -Q4 = -ea) there exists the dark soliton solution. If the 
two double roots are asymmetric with respect to origin the solution becomes the kink-like 
wave. By using the method developed in our paper we cannot find the kink-like solution 
because it is not possible to have Qz = Qj # -Q4 = -&. The solitary wave occurs on 
the branch between a double root and a simple root and the regular periodic solution occurs 
on the branch between two simple roots. 

4. Conclusions 

The method developed in this paper allows us to obtain a class of general solutions of NLSE 
describing the propagation of picoseconds light pulses in optical fibres in both the normal 
and anomalous group velocity dispersion regime. We found exact analytical solutions 
for the nonlinear wave equation (1.1) with E = &1 such as the bright or dark solitary 
waves, bright or dark soliton solutions, rational (algebraic) bright or dark solitons, periodic 
and stationary solutions. These solutions are obtained by a direct method which is based 
on the relationship (1.4) between the real and imaginary parts of the complex amplitude 
@(x,  t )  = u ( x ,  t )  + iv(x, t).  

From the general exact solutions we obtain as particular cases solutions which describe 
the development of the temporal self-phase modulation instability, the periodic evolution of 
a bright soliton superimposed on a continuous wave background and the collision of two 
dark waves with equal amplitudes. 

Finally we note that in order to obtain other classes of solutions of the NLSE (1.1) (the 
higher-order solutions), instead of taking the linear relationship (1.4) between the real and 
imaginary parts u ( x .  t )  and u ( x ,  t )  of the unknown function @(x, I), one can choose a 
rather arbitrary relationship of the form P ( u ( x ,  t ) ,  u ( x ,  t ) ,  x )  = 0 which is the equation of 
an algebraic curve in the space of pairs of functions ( U ,  U) whose parameters depend only 
on the spatial variable x .  

Acknowledgment 

One of the authors (DM) is grateful to Dr N N Akhmediev for a helpful discussion. 

References 

+[I] Hasegawa A and Tappert F 1973 AppL Phys. Len, 23 142 
[2] Hasegawa A and Tappert F 1973 Appl. Phys. Lea 23 171 
(31 Mollenauer L F, Stolen R H and Gordon J P 1980 Pkys. Rev. Leff. 45 1095 
[4] Blow K J and Doran N J 1985 Phys. Len. 107A SS 
[SI Tomlinson W J, Hawkins R J. Weiner A M, Heritage J P and Thurston R N 1989 J. Opt. Soc. Am B 6 329 
[61 Emplit P. Hamaide J P, Reynaud F, Froehly C and Bythelemy A 1987 Opt. Commun. 62 374 
[7J Krbkel D. Halas N J, Giuliani~C and Grischkowsld D 1988 Phys. Rev. Lea 60 29 



Pulse propagation in dispersive opricalfbres 2697 

Weiner A M, Heritage I P, Hawkins R I, Thurston R N, Kiachner EM,  Leaird D E and Tomlinson W J 

Nakanwa M, Suzuki K. Kubota H, Yamada E and Kimura Y 1990 IEEEJ. Quontum Electron 26 2095 
Nakawwa M, Suwlci K and Yatnada E 1992 Electron. Len. 28 1046 
Kodama Y and Hasegawa A 1982 Opt Len 7 339 
Winful H G I985 Appl. Phys. Lett. 46 527 
Anderson D and Lis& M 1985 Phys Rev. 32A 3270 
Christodoulides D N and Joseph R I 1985 Appl. Phys. Lett. 47 76 
Potasek M I ,  Agrawal G P and Pinault S C 1986 3. Opt. Soc. Am. B 3 205 
Gordon J P 1986 Opt. Len. 11 662 
Mollenauer L F, Gordon I P and Islam M N I986 IEEE J. Qwt. Electron 22 157 
Pask C and Vatarescu A 1986 f. Opt. Soc. Am B 3 1018 
Kodama Y and No& K 1987 Opt. Len. 12 1038 
Menyuk C R 1987 Opt. Len. 12 614 
Crosigmmi B, Yariv A and Di Port0 P 1988 Opt. Commun 65 387 
Trill0 S. Wabnitz S, Wright E M  and Stegeman G I 1988 Opt. Lett. 13 672 
Boardman A D and Cooper G S 1988 J. Opt. Soc. Am B 5 403 
Blow K J, Doran N J and Wood D 1987 Opt. Len. 12 202 
Afanasyev V V, Dianov EM. Prokhorov A M and Serkin V N 1989 Pis'ma a. Eksp, Teor. F i z  49 588 
Aceves A B and Wabnitz S 1989 Phys. Lett. A 141 37 
De Stake C M and Sipe J E 1989 Opt Lett 14 871 
Lai Y and Haus H A  I989 Phys. Rev. A 40 844, 854 
Kivshar Y S and Malomed B A 1989 Opt. Lett. 14 1365 
Newbult G K, Parker D F and F a u h e t  T R 1989 J.  Math Phys. 30 930 
Hayata K S3ka K and Koshiba M 1990 J. Appl. Phys. 68 4971 
Agrawd G P 1991 Phys.'Rev. A 44 7493 
Zakhmv V E and Shabat A B 1972 Sov. PAYS.-JETP 34 62; 1973 Sov. Phys.-fETP 37 823 
Satsuma J and Yajima N 1974 Progr. Theor. Phys. SuppL 55 284 
Ablowitz M I, Kaup D J, Newell A C and Segur H 1974 Stud. Appi. Math. 53 249 
Bullogh R K and Caudrey P J (e&) 1980 Solitons (Berlin: Springer) 
Ablowitz M 1 and Segur H 1981 Solitons and the Inverse Scanerins Method (Philadelphia: Society for 

Calogero F and Degsperis A 1988 Spectral Tran@orm and Soliunrr (Amsterdam: North-Holland) 
Dodd R K, Eilbeck J C Gibbon J D and Moms H C 1982 Solitons nnd Non-linear Waves (New York 

Gagnon L and Wintemik P 1988 J. Phys. A:  Math Gen. 21 1493: 1989 J. Phys. A: Math Gen. 22 469 
Gagnon L 1989 f .  Opt Soc. Am A 6 1477 
Floqanczyk M and Gagnon L 1990 Phys. Rev. A 41 4478 
Sal1 M A 1982 Teor. i Math F k  53 227 (in Russian) 
Kaup D J 1976 SIAM J.  Appl. Math. 31 121; 1990 Phys. REV. A 42 5689; 1991 Phys. Rev. A 44 4582 
Akhmediev N N, Eleonskii V M and Kulagin N E  1987 Tear. M a .  Fiz 72 183 (in Russian) 
Akhmediev N N and Komeev V I 1986 Theor. Mat. Fir. 69 189 
Hasegawa A 1984 Opt. Lett. 9 288 
Anderson D and Lis& M 1984 Opt. Lett. 9 468 
Akhmediev N N, Eleonskii V M and Kulagin N E 1985 SOP. Phys.-JETP 62 894 
Byrd P F and Friedman M D 1971 Hmdbook~of Elliptic Inlqralsfor Engineers nnd Scientist: (Berlin: 

Kom G A and Kom T M 1961 Mnthemticd Hnndbook for Scientists and Engineers (New Yo* McGraw 

Ma Y C 1979 Stud Appl. Math 60 43 
Mmediev N N and Wabnitz S 1992 J. Opt. Soc. A m  B 9 236 

1988 Phy.s. Rev. Lett. 61 2445 

Industrial and Applied Mathematics) 

Academic Press) 

Springer) 

Hill) 

IS1 

1101 
1111 
1121 
I131 
1141 
1151 
1161 
1171 
1181 
1191 
1201 
1211 
1221 
1231 

I251 
1261 
1271 
P81 
1291 
I301 
1311 

1331 
1341 
1351 
1361 
1371 

1381 
1391 

191 

~241 

1321 

1401 
1411 

1431 
1441 

1461 
1471 

1421 

1451 


